

Análisis de Respuesta Hidrológica Monitoreo de Impacto

Sitio Área de Conservación Hídrica Antisana

Periodo 2014 - 2020

El presente documento constituye una síntesis de los indicadores de respuesta hidrológica y análisis de calidad de agua calculados para las microcuencas de monitoreo de impacto del Área de Conservación Hídrica Antisana (ACHA). El objetivo es presentar de una manera clara y concisa la información procesada de precipitación y caudal, así como los principales resultados relacionados a calidad del agua.

Para este fin, se utilizan gráficos, índices e indicadores, juntamente con información secundaria para conceptualizar y generar hipótesis del funcionamiento hidrológico de cada una de las microcuencas y evaluar el efecto de las intervenciones que realiza el FONAG. Para mayor detalle a cerca del procesamiento de datos y/o los datos crudos se deberá referir a los anexos hidrometeorológico y de calidad de agua del ACHA.

Reporte de Monitoreo Hidrometeorológico

La Figura 1 muestra la delimitación del ACHA donde se ubican las tres microcuencas de monitoreo de impacto: Microcuenca 1 (JTU01HQ22), Microcuenca 2 (JTU01HQ32) y Microcuenca 3 (JTU01HQ43). La restauración en las tres cuencas ha sido del tipo pasiva, es decir se eliminó el tensionante para permitir la recuperación natural del ecosistema. Las cuencas antes de ser destinadas a conservación eran utilizadas para la cría de ovejas y vacas.

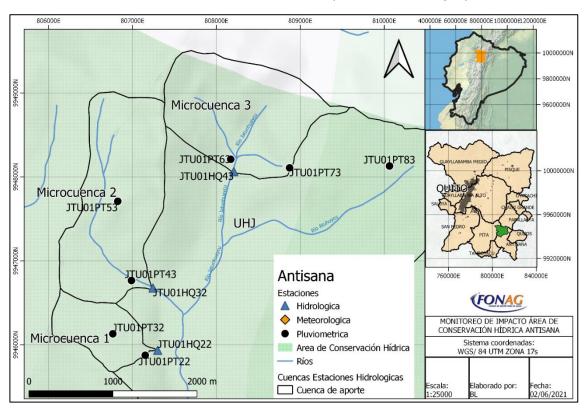


Figura 1. Mapa del área de conservación hídrica Antisana ACHA, cuencas de monitoreo de impacto, y estaciones pluviométricas e hidrológicas dentro del área.

En la Tabla 1, se observa las características morfométricas de las cuencas de monitoreo de impacto en el ACHA, como principales diferencias se tiene que: el área de las microcuencas 2 y 3 son similares, mientras que el área de la microcuenca 1 es mucho menor. La microcuenca 1 tiene menor porcentaje de pendientes pronunciadas y tiene menor altitud media, por su parte las microcuencas 2 y 3 poseen pendientes más pronunciadas.

Descripción	Unidad	Microcuenca 1 JTU_01_HQ_22	Microcuenca 2 JTU_01_HQ_32	Microcuenca 3 JTU_01_HQ_43
		Parámetros físicos		
Área de la cuenca	Km2	0.66	2.31	2.06
Perímetro de la cuenca	Km	3.18	5.23	4.88
Longitud de la cuenca	Km	1.50	2.90	1.70
Ancho de la cuenca	Km	0.37	0.51	0.91
	(Características de relieve		
Cota máxima	m.s.n.m	4220	4445	4500
Cota mínima	m.s.n.m	4062	4087	4132
Centroide (WGS 84 UTM Zona 175	<u> </u>			
Altitud media de la cuenca	m.s.n.m	4151.73	4249.48	4329.15
Pendiente media de la cuenca	%	9.51	22.30	35.15
Porcentaje del área con una pendiente entre el 0-20%	%	96.70	34.54	21.96
Porcentaje del área con una pendiente entre el 20-40%	%	3.30	61.71	56.44
	<u>I</u>	Parámetros de forma		
		1.21	1.22	1.11
índice de compacidad		Clase I	Clase I	Clase I
		Casi redonda	Casi redonda	Casi redonda
		0.24	0.17	0.54
Factor de forma		Tiende a ser alargada	Tiende a ser alargada	Tiende a ser alargada
		4.08	5.74	1.87
Índice de alargamiento		Alargada	Alargada	Alargada
	Caract	erísticas del sistema de d	renaje	
Longitud del cauce principal	Km	1.5	2.9	1.7
		Usos de Suelo		
Porcentaje de la cuenca cubierta por pajonal	%	15%	55%	59%
Porcentaje de la cuenca cubierta por almohadillas (humedal)	%	85%	42%	41%

Tabla 1.Propiedades morfométricas de las cuencas de monitoreo de impacto dentro del ACHA.

Régimen de precipitación

Las microcuencas de monitoreo de impacto del ACHA cuentan con ocho estaciones pluviométricas distribuidas en las tres microcuencas. Durante el periodo de estudio (2014 - 2020) se observó un claro incremento de precipitación media anual con la altitud, Figura 2. La Microcuenca 3 recibe mayor precipitación con relación a su área que la Microcuenca 1 y la Microcuenca 2. Esto se valida en la

Precipitación acumulada (mm) Microcuencas monitoreo impacto ACHA	2014	2015	2016	2017	2018	2019	2020
Microcuenca 1 (M1)	773.2	614.7	736.0	899.9	796.8	901.2	744.2
Microcuenca 2 (M2)	865.1	660.6	738.4	985.6	845.8	1153.5	809.7
Microcuenca 3 (M3)	983.8	734.8	824.3	1041.9	871.3	1155.7	818.5
Diferencia M1 -M2	91.9	45.8	2.4	85.7	49.1	252.3	65.5
Diferencia M3-M1	210.6	120.1	88.2	142.0	74.6	254.6	74.3
Diferencia M3-M2	118.8	74.3	85.9	56.3	25.5	2.3	8.8

Tabla 2 en la cual se presenta la precipitación interpolada para las tres microcuencas durante el periodo de estudio. Las diferencias más grandes de precipitación se dan entre la Microcuenca 1 y Microcuenca 3, llegando a un máximo de 254.6 mm en el 2019. La altitud parece ser determinante en la cantidad de la precipitación.

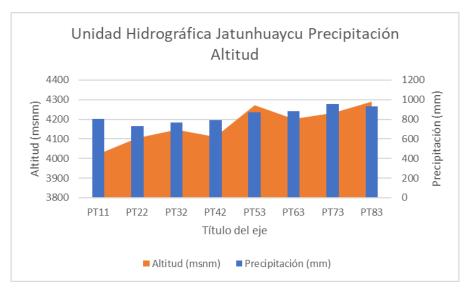


Figura 2. Precipitación media anual respecto a altitud de las estaciones en las microcuencas de monitoreo de impacto – ACHA. Periodo 2014 – 2020.

Precipitación acumulada (mm) Microcuencas monitoreo impacto ACHA	2014	2015	2016	2017	2018	2019	2020
Microcuenca 1 (M1)	773.2	614.7	736.0	899.9	796.8	901.2	744.2
Microcuenca 2 (M2)	865.1	660.6	738.4	985.6	845.8	1153.5	809.7
Microcuenca 3 (M3)	983.8	734.8	824.3	1041.9	871.3	1155.7	818.5
Diferencia M1 -M2	91.9	45.8	2.4	85.7	49.1	252.3	65.5
Diferencia M3-M1	210.6	120.1	88.2	142.0	74.6	254.6	74.3

Precipitación acumulada (mm) Microcuencas monitoreo impacto ACHA	2014	2015	2016	2017	2018	2019	2020
Diferencia M3-M2	118.8	74.3	85.9	56.3	25.5	2.3	8.8

Tabla 2. Precipitación en mm resultado de la espacialización de la precipitación en las microcuencas de monitoreo de impacto en el ACHA utilizando el método de Inverse Distance Weighting IDW para cada una de las microcuencas.

Con respecto a la distribución de la precipitación a lo largo del año, la precipitación media mensual se presenta en la Figura 3. Se observa claramente en las tres microcuencas un periodo de menor precipitación de junio a septiembre, y otro de diciembre a febrero, mientras las épocas lluviosas comprenden desde octubre hasta diciembre y de marzo a junio. Se puede definir al régimen de precipitación como bimodal con mayor precipitación en marzo-mayo y octubre-noviembre. Si bien hay diferencia entre las épocas lluviosa y menos lluviosa, se puede asegurar que la precipitación se encuentra distribuida uniformemente a lo largo del año y eso se refleja en los índices de estacionalidad presentados en la Tabla 3. Con base en la Tabla 3 se observa que la precipitación fue más homogéneamente distribuida durante el año 2017, 2018 y 2020 con índices de estacionalidad entre 0.18 y 0.19. El resto de los años presentan índices de estacionalidad ligeramente superiores entre 0.2 y 0.31. La precipitación es más homogénea en las partes altas (JTU01PT53, JTU01PT63, JTU01PT73). Hay años donde la precipitación es homogénea en toda el área, sin que la altitud sea determinante, como en los años 2017, 2018 y 2020.

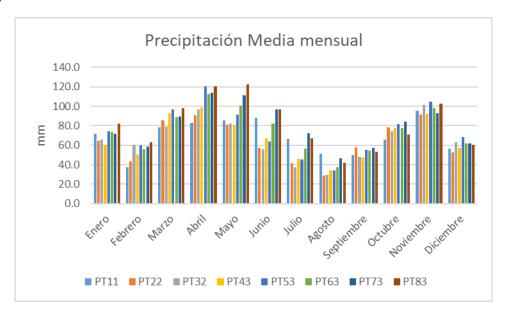


Figura 3. Precipitación media mensual registradas por las estaciones de monitoreo de impacto del ACHA, periodo 2014-2019.

Año	JTU01PT22	JTU01PT32	JTU01PT42	JTU01PT53	JTU01PT63	JTU01PT73
	0.24		0.23	0.27	0.25	0.27
2014	Algo estacional con una temporada seca corta		Algo estacional con una temporada seca corta			
2015		0.26	0.23	0.16	0.19	0.19

Año	JTU01PT22	JTU01PT32	JTU01PT42	JTU01PT53	JTU01PT63	JTU01PT73
		Algo estacional con una temporada seca corta	Algo estacional con una temporada seca corta	Homogéneo, pero con una temporada más húmeda	Homogéneo, pero con una temporada más húmeda	Algo estacional con una temporada seca corta
	0.29	0.31	0.27	0.25	0.21	0.19
2016	Algo estacional con una temporada seca corta	Homogéneo, pero con una temporada más húmeda				
		0.19	0.18	0.19	0.19	0.19
2017		Homogéneo, pero con una temporada más húmeda				
	0.22	0.21	0.2	0.21	0.21	0.2
2018	Algo estacional con una temporada seca corta	Algo estacional con una temporada seca corta	Homogéneo, pero con una temporada más húmeda	Algo estacional con una temporada seca corta	Algo estacional con una temporada seca corta	Homogéneo, pero con una temporada más húmeda
		0.2		0.24	0.23	0.22
2019		Homogéneo, pero con una temporada más húmeda		Algo estacional con una temporada seca corta	Algo estacional con una temporada seca corta	Algo estacional con una temporada seca corta
		0.17		0.19		0.19
2020		Homogéneo, pero con una temporada más húmeda		Homogéneo, pero con una temporada más húmeda		Homogéneo, pero con una temporada más húmeda

Tabla 3 . Índice de estacionalidad en la precipitación registrado por las estaciones de monitoreo de impacto dentro del ACHAP

Régimen de Caudal.

El resumen de los indicadores de caudal se presenta en la Tabla 4. En todos los percentiles de caudal, la Microcuenca 3 genera mayor cantidad de agua que las Microcuenca 1 y Microcuenca 2 durante este periodo. Con respecto a los caudales bajos la Microcuenca 2 posee los más bajos en comparación a las otras microcuencas, el 95 % de tiempo presenta caudales mayores a 0.33 l/s/km². La microcuenca 2 presenta un caudal máximo diario 41.24 l/s/km² más que la Microcuenca 1, pero 141.59 l/s/km² menos que la Microcuenca 3. Durante el 10% de tiempo, la Microcuenca 1 presenta caudales superiores a 3.38 l/s/km², la Microcuenca 2 supera los 7.6 l/s/km² y la Microcuenca 3 supera los 55.67 l/s/km² para esta misma ventana de tiempo. Esta diferencia en producción de caudal de la Microcuencas 1 y Microcuenca 2 también se refleja en el Q50. El 50 % del tiempo la Microcuenca 1 genera caudales superiores a 2.04 l/s/km², aproximadamente 7 veces menos que la Microcuenca 3 y el doble de la Microcuenca 2.

RÉGIMEN DE CAUDAL EN MICROCUENCAS JATUNHUAYCU							
Cuenca Microcuenca 1 Microcuenca 2 Microcuenca 2 JTU01HQ22 JTU01HQ32 JTU01HQ4							
Área de aporte	0.66 Km ²	2.31 Km ²	2.06 Km ²				
Caudales bajos	(I/s/km2)	(l/s/km2)	(I/s/km2)				
Caudal mínimo diario. 0.75 0.16 4.92							
Q 95.	1.09	0.33	8.37				

Promedio de caudal del mes más seco.	0.9	0.25	8.73
Caudales altos	(I/s/km2)	(I/s/km2)	(I/s/km2)
Caudal máximo diario	7.04	48.28	189.87
Q 10.	3.38	7.6	55.69
Caudales medios	(I/s/km2)	(I/s/km2)	(I/s/km2)
Caudal promedio diario.	2.16	2.38	21.31
Q50.	2.04	1.28	14.82

Tabla 4 . Percentiles de caudal registrados en las microcuencas dentro del ACHAP

Los indicadores del régimen de caudal para las microcuencas de monitoreo de impacto del ACHA se presentan en la Tabla 5. Para las microcuencas 1 y 2 no se posee información para el año 2020 debido a una falla en los equipos en campo. Los coeficientes de variación de caudales son más altos en la Microcuenca 2. Lo mismo puede observarse en el rango de descarga y el Rango 10 95, donde la Microcuenca 2 presenta la mayor variabilidad lo cual se traduce en una mayor diferencia entre caudales altos y bajos. Es claro que la Microcuenca 3 produce mucha más agua que las otras dos microcuencas. Si se cuantifica el volumen de agua que producen las microcuencas en el periodo a través de escorrentía, se observa que la Microcuenca 1 depende más del flujo base que de crecidas, a diferencia de la Microcuenca 2 y Microcuenca 3 cuyo volumen llega hasta en un 60% a corresponder a flujo base, y el 40 % a crecidas. La variación podría responder a las pendientes de las cuencas, la Microcuenca 1 tiene una pendiente topográfica promedio de 9.51% con aproximadamente el 97% de su área con pendientes entre 0 y 20%, lo que le permite sostener los flujos de caudal, ralentizar la escorrentía y disminuir la conectividad hidrológica en las laderas ante eventos de precipitación, esto se traduce por tanto en una mejor regulación hídrica. Las Microcuenca 2 y 3 tienen pendientes promedio de 22.30 % y 35.15 %, con aproximadamente el 62% y 56% de área con pendientes entre 20% - 40% respectivamente, esto conjugado al índice de compacidad de las cuencas puede contribuir a una mayor magnitud de crecidas y menores tiempos de recesión, sin embargo, a pesar de que la Microcuenca 3 posee una pendiente mayor, mantiene una mejor regulación y producción que la Microcuenca 2. La pendiente como indicador debe ser usado para comparar interanualmente la regulación en una misma cuenca para evitar comparaciones erróneas por los distintos grados de magnitud.

El año 2019 (año húmedo) la microcuenca 3 posee el mayor coeficiente de variación, el mayor rango de descarga, la mayor pendiente y el menor BFI. Esto se traduce en que al parecer durante épocas más húmedas la microcuenca 3 no regula el "exceso" de precipitación y aumenta la descarga. Esto se valida con la información de precipitación interpolada, en el 2019 se observa la mayor cantidad de precipitación sobre la microcuenca 3. Además, se observa que el 2019 fue mas estacional (precipitación menos homogénea a lo largo del año), lo cual se traduce en que durante las épocas de abundante precipitación el sistema permaneció saturado y por lo tanto aumentó la descarga.

			Indi	cador Régimen (Caudal ¹	
Cuencas	Año	CV_Caudal	Rango Descarga (I/s)	RangoQ10_95 (I/s)	Pendiente de la curva de duración (20% a 80%)	BFI
	2014	0.34	13.77	2.07	1.12	0.86
	2015	0.16	9.77	1.26	0.41	0.91
Microcuenca 1 JTU01HQ22	2016	0.21	10.97	1.36	0.52	0.90
3100111011	2018 (04-12)	0.19	6.99	1.41	0.74	0.91
	2019	0.16	6.03	1.43	1.12	0.91
	2014 (02-12)	1.30	328.45	18.59	4.33	0.44
	2015	1.31	221.60	7.00	2.08	0.50
Microcuenca 2	2016	1.62	404.54	15.56	2.34	0.45
JTU01HQ32	2017	1.24	195.01	13.48	7.09	0.49
	2018	1.26	181.76	7.41	3.14	0.53
	2019	1.54	724.82	10	5.01	0.47
	2014	0.81	56.97	5.91	22.10	0.62
	2015	0.77	40.66	2.86	11.73	0.68
Microcuenca 3	2016	0.92	98.35	4.68	17.48	0.65
JTU01HQ43	2017	0.87	48.66	4.92	25.50	0.67
	2018	0.76	30.86	3.38	13.15	0.66
	2019	0.94	109.58	6.03	27.03	0.60
	2020	0.68	69.50	3.85	13.12	0.64

Tabla 5 .Indicadores de regímenes de caudal en las microcuencas del ACHA

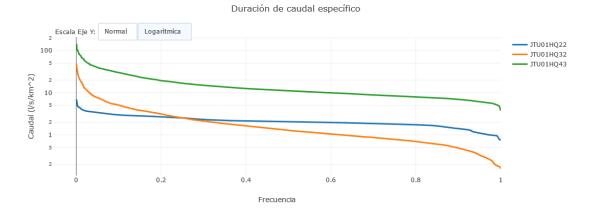


Figura 4. Curva de duración de caudales para las Microcuencas 1, 2 y 3 de monitoreo de impacto del ACHA. Periodo 2014 - 2020

Régimen Hidrológico

Los indicadores de régimen hidrológico para las microcuencas de monitoreo de impacto del ACHA se presentan en la Tabla 6. La Microcuenca 3 produce más agua que la Microcuenca 1 y

Rango Descarga: razón entre el caudal máximo y mínimo registrado Q0/Q100 Rango 10_95: Q10/Q95

Pendiente: pendiente de la curva de duración de caudal entre Q20 y Q80

BFI: Base Flow Index o índice de flujo base

 $^{^{1}}$ CV: coeficiente de variación

Microcuenca 2 con relación a su área. Esto a su vez se refleja en el coeficiente de escorrentía que siempre es mayor para la Microcuenca 3 durante los años de estudio y sus pérdidas son menores.

No existe una relación clara entre el volumen precipitado y las pérdidas. Una posible causa de aumento de perdidas es un aumento en la evapotranspiración, para comprender esto es necesario el monitoreo de la evapotranspiración. Otra posible fuente de perdida es la percolación profunda, para fortalecer esta hipótesis se necesita caracterizaciones geológicas y del perfil de suelo a lo largo de las microcuencas. Sin embargo, en otros estudios se ha reportado un aumento en la percolación profunda debido a un aumento de la carga hidráulica de los suelos "empujando" el agua hacia abajo. Para que este fenómeno se produzca sería necesario una roca fracturada con alta permeabilidad que pueda ser recargada relativamente fácil. Las hipótesis derivadas de estas observaciones podrán ser validadas a futuro.

Al parecer en todas las microcuencas existe suelos muy profundos, por lo que la pendiente podría ser un factor muy importante que influye en el rendimiento y regulación hídrica. La microcuenca 1 posee pendientes suaves que permiten al agua infiltrarse con dominancia de flujos verticales sin conectividad lateral. En las microcuencas 2 y 3 al parecer las altas pendientes favorecen la conectividad lateral en laderas y por esto se observa que eventos de crecidas ocurren después de precipitaciones fuertes. Menores pendientes limitan la conectividad hidrológica que genera escorrentía por lo que el agua en el suelo podría estar mas disponible para plantas y así aumentar la evapotranspiración. Para validar esto se necesitaría una medición de humedad del suelo a lo largo de las laderas de las tres microcuencas.

Si bien existen diferencias marcadas entre todas las microcuencas, es claro que la geología debe tener un papel muy influyente, ya que si solo las pendientes controlasen el rendimiento y regulación se esperaría que la microcuenca 2 tenga caudales bases superiores a los de la microcuenca 1 y similares o ligeramente inferiores a la microcuenca 3. Sin embargo, esto no es así, la microcuenca 2 posee perdidas muy grandes que no deben ser únicamente debido a las pendientes.

Para comprender la diferencia en el régimen hidrológico de estas tres microcuencas se necesita complementar la información hidrometeorológica clásica con trazadores e información de suelos a lo largo de toda el área de estudio.

Cuenca	Periodo	Coeficientes hidrológicos ²				
		Rendimiento Hídrico	Diff	Sumacaudal	Sumaprecipit	
	2014	0.07	734.81	2.01	54.98	789.79
	2015	0.13	544.33	1.49	80.28	624.62
Microcuenca 1	2016	0.1	666.36	1.83	74.6	740.96
_	2017			0.00		907.40
	2018	0.11	706.67	1.94	86.56	793.22

² Diff: diferencia en milímetros entre precipitación y escorrentía anual

Diff365: media diaria de perdidas en mm Sumaprec: precipitación anual en mm Sumacaudal: escorrentía anual en mm

Rendimiento Hídrico: razón entre precipitación y escorrentía anuales

	2019	0.12	830.89	2.28	113.17	944.06
	2014	0.14	721.46	1.98	118.81	840.27
	2015	0.12	569.70	1.56	78.37	648.07
Microcuenca	2016	0.09	673.12	1.84	68.58	741.70
2	2017	0.24	732.00	2.01	226.74	958.74
	2018	0.13	725.59	1.99	103.8	829.39
	2019	0.15	907.64	2.49	163.97	1071.61
	2014	0.54	449.49	1.23	534.33	983.8
	2015	0.57	312.52	0.86	422.3	734.8
	2016	0.58	342.12	0.93	482.13	824.3
Microcuenca 3	2017	0.46	558.35	1.53	483.55	1041.9
J	2018	0.45	480.49	1.32	390.81	871.3
	2019	0.49	592.38	1.62	563.34	1155.7
	2020	0.51	400.04	1.09	418.47	818.5

Tabla 6 .Indicadores de regímenes hidrológicos para las microcuencas del ACHA

Reporte de Monitoreo de Calidad de Agua

El FONAG además del monitoreo hidrometeorológico, realiza un monitoreo de calidad del agua en sus predios. El monitoreo de Calidad de Agua tiene dos objetivos, el primero es a largo plazo y consiste en evidenciar el impacto de la conservación y restauración de las fuentes hídricas sobre el agua. El segundo objetivo consiste en utilizar las concentraciones de diversos compuestos como trazadores biogeoquímicos y así complementar el entendimiento hidrológico de las cuencas.

Hasta el 2020 dentro del ACH Antisana se cuenta con 9 puntos de monitoreo de calidad de agua. Los puntos monitorean el cierre de las microcuencas experimentales descritas anteriormente, así como puntos de confluencia de ríos y humedales. El detalle de los puntos se observa en la Figura 5 y Tabla 7. Para más detalle a cerca de cada uno de los puntos se puede referir al anexo de Calidad de Agua.

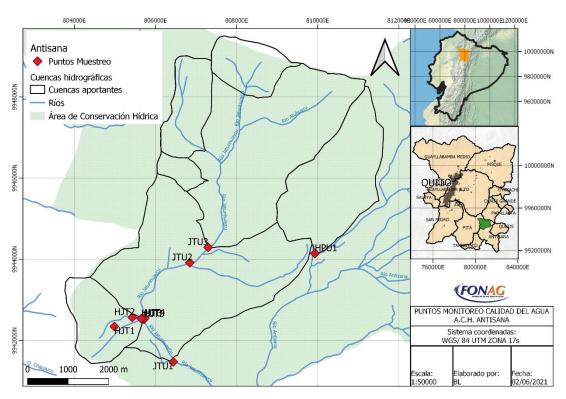


Figura 5. Localización de puntos de monitoreo de calidad del agua en el Área de Conservación Hídrica Antisana.

A.C.H	Código	Descripción	Tipo de Muestra	Frecuencia de Monitoreo
ANTISANA	HJT1	Ojo de agua		
ANTISANA	HJT2	Dique en humedal	For House del	Camaaahmal
ANTISANA	НЈТ3	Salida del humedal	En Humedal Jatunhuaycu	Semestral, Trimestral
ANTISANA	HJT4	Río Jatunhuaycu	Jatuilluaycu	Tilliestiai
ANTISANA	HJT5	Unión río con salida del humedal		
ANTISANA	HPU1	Humedal Pugllohuma	En Humedal Pugllohuma	Trimestral
ANTISANA	JTU1	Estación INAMHI (H5010)	En Cierre de	Trimestral
ANTISANA	JTU2	Unión Jatunhuaycu con Pugllohuma 1	Cuenca	minestrai

A.C.H	Código	Descripción	Tipo de Muestra	Frecuencia de Monitoreo
ANTISANA	JTU3	Estación Vertedero (JTU-01-HI-11)		

Tabla 7. Descripción puntos de monitoreo de calidad del agua en el Área de Conservación Hídrica Antisana.

Los monitoreos en los puntos tienen una frecuencia trimestral para varios parámetros y semestral para los puntos dentro del humedal Jatunhuaycu. El objetivo de los muestreos es evidenciar los efectos de la reducción de carga animal, la recuperación ecológica efecto de la conservación y la restauración pasiva de las fuentes de agua, además de evidenciar los cambios en calidad de agua una vez bloqueados los drenajes artificiales de los humedales del ACHA.

Hasta el 2020 se realizaron 841 análisis para el ACHA, el número de muestras para cada categoría y el detalle de parámetros por categoría se presenta en la Tabla 8 para el ACHA. La mayor cantidad de muestreos se han realizado en los puntos HPU1, JTU1, JTU2 y JTU3 con más de 100 parámetros analizados para estos puntos en hasta 10 campañas de muestreo. Los puntos del humedal Jatunhuaycu poseen solo un par de muestreos.

Categoría	Parámetro	HJT1	НЈТ2	нлтз	НЈТ4	НЈТ5	HPU	JTU1	JTU2	лтиз
ANUONEC	Nitratos	2	2	3	2	2	10	10	11	11
ANIONES	Sulfatos	1	1	2	1	1	10	10	10	10
	Color Aparente	2	2	3	2	2				
	Color Real	2	2	4	2	2	10	10	10	10
	Dureza Total						5	5	5	5
	Oxígeno Disuelto			1			1	1	1	1
FISICOQUÍMICOS	Solidos Suspendidos (Gravimétricos) SSG	2	2	3	2	2	11	11	11	11
	Solidos Totales (Gravimétricos)	2	2	3	2	2				
	Solidos Totales Disueltos	2	2	3	2	2				
	Turbidez	2	2	4	2	2	7	6	7	7
	Temperatura de la muestra			1						
	Fosfato	1	1	2	1	1	11	11	11	10
INORGÁNICOS NO	Fósforo Total						7	7	7	7
METALICOS	Nitritos	2	2	3	2	2	12	12	11	11
	Nitrógeno Total	1	1	1	1	1	1	1	1	1
	Aluminio			1						
	Antimonio			1						
	Arsénico			1						
	Bario			1						
	Cadmio			1						
	Cobre			1						
METALES TOTALES	Cromo Total			1						
	Fósforo Total	1	1	2	1	1				1
	Hierro Total	2	2	4	2	2	7	7	7	7
	Manganeso Total	1	1	3	1	1	7	7	7	7
	Níquel			1						
	Plata			1						

Categoría	Parámetro	HJT1	НЈТ2	нлтз	НЈТ4	HJT5	НРО	JTU1	JTU2	лтиз
	Plomo			1						
	Selenio			1						
MICROBIOLÓGICOS	Coliformes Totales			2			11	11	11	11
MICROBIOLOGICOS	Escherichia Coli			2			11	11	11	11
	Amonio	2	2	3	2	2	7	7	7	7
	Amonio Expresado como Nitrógeno	2	2	3	2	2	4	4	4	4
	Carbono Orgánico Disuelto	2	2	3	2	2	2			
PARÁMETROS ORGÁNICOS	Carbono Orgánico Total	2	2	3	2	2	2			
ORGANICOS	Demanda Bioquímica de Oxígeno (5 días)	2	2	3	2	2	7	8	8	7
	Demanda Química de Oxígeno	2	2	3	2	2	7	8	8	7
	Nitrógeno Orgánico	2	2	3	2	2	6	6	6	6

Tabla 8. Numero de parámetros analizadas, clasificadas por categoría y laboratorio ACHA.

Con el objetivo de optimizar la presentación de los resultados debido a la diversidad de parámetros y unidades en las que estos se analizan y reportan se optó por presentar los resultados como el porcentaje de muestras que estuvieron bajo los límites de detección de los equipos de medición de laboratorio (Tabla 9). Si la mayoría de los análisis realizados se encuentran fuera de los límites de detección, la tabla 9 mostrará un color gris, si la minoría están fuera de los límites de detección un color verde tenue y si todos los análisis están en los límites de detección un color verde. El motivo para esta codificación es que permite evaluar rápidamente si en los sitios existen concentraciones bajas de ciertos parámetros. Por ejemplo, la concentración de nitratos y sulfatos son muy bajas en los puntos JTU1, JTU2, JTU3 y HPU1 (color gris y verde tenue en la tabla 9). Por su lado para la mayoría de los puntos del humedal Jatunhuaycu, si bien solo se han hecho dos monitoreos, las concentraciones de nitratos y sulfatos son mayores (color verde en tabla 9). La categorización considerada no esta relacionada con normativas ambientales, ni sanitarias, únicamente se clasifican los resultados de laboratorio por niveles de detección, información que facilita identificar los resultados que pueden pasar a un proceso de análisis dentro de estudios de interés.

El fosfato en todos los sitios de monitoreo siempre ha estado bajo el límite de detección. En el caso de metales estos solo se han analizado una vez en el punto HJT3 y sus concentraciones de igual manera están bajo los límites de detección. En el caso del Hierro total observamos que este pudo ser determinado en sus concentraciones reales en todos los puntos de muestreo. El magnesio total tiene una tendencia similar a los nitratos y sulfatos, es decir e sta dentro de los límites de detección en el humedal Jatunhuaycu, pero no en los puntos JTU.

En el caso de los parámetros biológicos estos prácticamente la mayor parte del tiempo han podido ser cuantificados.

Con respecto al amonio este tiene un comportamiento diferente al resto de parámetros, en algunos puntos del humedal. Específicamente en los puntos HJT4 y HJT5 se tienen concentraciones bajas de NH4, posiblemente atribuibles a la junta del agua del humedal con el río Jatunhuaycu, este último al parecer con menor concentración de NH4.

Para el caso del carbono orgánico total y orgánico disuelto se observa que en el punto HJTU3 uno de los análisis se encontró por debajo del límite de detección. Esto es inusual ya que es de

esperarse concentraciones altas de COD a la salida de los humedales (punto HJTU3) tal vez este análisis de laboratorio tiene inconsistencias. Al haber únicamente tres campañas de monitoreo no se puede asegurar si este dato es verdadero o no.

Al tratar los datos de esta manera, nos permite identificar parámetros que tal vez no serán afectados por las acciones de conservación y restauración ya que de por si sus valores de fondo (concentración natural) son muy bajos. Por otro lado, nos permite determinar parámetros que pueden ser indicadores de la recuperación del ecosistema. Hay que recalcar que, para realizar un análisis robusto de dinámicas temporales de calidad del agua, monitoreos a mediano y largo plazo son necesarios ya que permitirán evaluar si con el tiempo las concentraciones de estos parámetros cambian o si tienen dependencia de variables hidrológicas como el nivel del agua. A la fecha, en el humedal de Jatunhuaycu se poseen únicamente 3 campañas de monitoreo como máximo (2 en la mayoría de los casos). Algunos parámetros poseen un solo valor por lo que no se puede realizar comparaciones ni conclusiones con los datos actuales por tanto, es necesario continuar con el monitoreo.

	ANTISANA																	
PARAMETRO	HJT1		HJT2		HJT3		HJT4		HJT5		HPU1		JTU1		JTU2		JTU3	
	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%
Nitratos	2	0%	2	100%	3	67%	2	0%	2	0%	10	90%	10	80%	11	100%	11	100%
Sulfatos	1	0%	1	0%	2	0%	1	0%	1	0%	10	90%	10	30%	10	70%	10	90%
Color Aparente	2	0%	2	0%	3	0%	2	0%	2	0%								
Color Real	2	0%	2	0%	4	0%	2	0%	2	0%	10	0%	10	0%	10	0%	10	0%
Dureza Total											5	0%	5	0%	5	0%	5	0%
OD					1	0%					1	0%	1	0%	1	0%	1	0%
SSG	2	0%	2	50%	3	33%	2	50%	2	0%	11	0%	11	0%	11	0%	11	0%
STG	2	0%	2	0%	3	0%	2	0%	2	0%								
STD	2	0%	2	0%	3	0%	2	0%	2	0%								
Turbidez	2	0%	2	50%	4	0%	2	0%	2	0%	7	0%	6	0%	7	0%	7	0%
T° Agua					1	0%												
PO4	1	100%	1	100%	2	100%	1	100%	1	100%	11	100%	11	100%	11	100%	10	100%
P total											7	0%	7	0%	7	0%	7	0%
Nitritos	2	100%	2	100%	3	100%	2	100%	2	100%	12	33%	12	33%	11	27%	11	27%
N total	1	0%	1	100%	1	0%	1	0%	1	0%	1	0%	1	0%	1	0%	1	0%
Al					1	100%												
Sb					1	100%												
As					1	100%												
Ва					1	100%												
Cd					1	100%												
Cu					1	0%												
Cr Total					1	100%												
P total	1	100%	1	100%	2	100%	1	0%	1	0%							1	100%
Fe total	2	0%	2	0%	4	0%	2	0%	2	0%	7	0%	7	0%	7	0%	7	0%
Mg total	1	0%	1	0%	3	0%	1	0%	1	0%	7	100%	7	57%	7	100%	7	100%
Ni					1	100%												
Ag					1	100%												
Pb					1	100%												
Se					1	100%												
Coliformes					2	50%					11	18%	11	9%	11	9%	11	18%
Totales					2	30%					11	10%	11	370	11	370	11	16%
Escherichia Coli					2	50%					11	55%	11	9%	11	9%	11	27%
Giardia																		

	ANTISANA																	
PARAMETRO	HJT1		HJT2		НЈТ3		HJT4			HJT5		HPU1		JTU1		JTU2		TU3
	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%
NH4	2	0%	2	0%	3	33%	2	100%	2	100%	7	43%	7	29%	7	43%	7	43%
NH4-N	2	0%	2	0%	3	33%	2	100%	2	100%	4	50%	4	50%	4	50%	4	50%
COD	2	0%	2	0%	3	33%	2	0%	2	0%	2	0%						
COT	2	0%	2	0%	3	33%	2	0%	2	0%	2	0%						
DBO5	2	100%	2	100%	3	100%	2	100%	2	100%	7	29%	8	13%	8	0%	7	0%
DQO	2	0%	2	0%	3	33%	2	0%	2	0%	7	14%	8	13%	8	0%	7	0%
N-organico	2	100%	2	50%	3	33%	2	100%	2	100%	6	33%	6	83%	6	50%	6	50%
	Todas las muestras analizadas estaban dentro de los límites de detección de la técnica analítica																	
	(co	oncentra	acio	nes rea	les	del com	pue	esto)										
	То	das las	mu	estras a	nali	zadas e	sta	ban bajo	los	límites	de d	etecció	า de	la técnio	ca an	alítica		•
	(co	oncentra	acio	nes me	nor	es al lín	iite	de dete	cci	ón del la	bora	torio, s	inóni	mo de d	conce	ntracio	nes b	ajas)

Tabla 9. Parámetros analizados por punto, n corresponde al número de análisis realizado para cada parámetro y punto individualmente, % corresponde al porcentaje de parámetros analizados que están bajo los límites de detección del laboratorio, es así que 100 % indica que todos los análisis realizados se encuentran fuera de los límites de detección del laboratorio o en otras palabras que las concentraciones reales son bajas y se necesitaría otra técnica analítica para determinar concentraciones reales. O % implica que ningún análisis se encuentra fuera de los límites de detección del laboratorio. Los códigos de color corresponden: Gris: todas o la mayoría de las muestras se encuentran fuera de los límites de detección, Verde tenue: Al menos una muestra se encuentra fuera de los límites de detección, Verde: todas las muestras se encuentran en los límites de detección del laboratorio o en otras palabras se determinó concentraciones reales en todos los análisis.

Elaborado por: Braulio Lahuatte, Paola Fuentes, Enrique Quinteros y Wilson Vega

Revisado por: Andrea Vera

Aprobado por: